Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Hydrogen bonding is a central concept in chemistry and biochemistry, and so it continues to attract intense study. Here, we examine hydrogen bonding in the H2S dimer, in comparison with the well-studied water dimer, in unprecedented detail. We record a mass-selected IR spectrum of the H2S dimer in superfluid helium nanodroplets. We are able to resolve a rotational substructure in each of the three distinct bands and, based on it, assign these to vibration-rotation-tunneling transitions of a single intramolecular vibration. With the use of high-level potential and dipole-moment surfaces we compute the vibration-rotation-tunneling dynamics and far-infrared spectrum with rigorous quantum methods. Intramolecular mode Vibrational Self-Consistent-Field and Configuration-Interaction calculations provide the frequencies and intensities of the four SH-stretch modes, with a focus on the most intense, the donor bound SH mode which yields the experimentally observed bands. We show that the intermolecular modes in the H2S dimer are substantially more delocalized and more strongly mixed than in the water dimer. The less directional nature of the hydrogen bonding can be quantified in terms of weaker electrostatic and more important dispersion interactions. The present study reconciles all previous spectroscopic data, and serves as a sensitive test for the potential and dipole-moment surfaces.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Gagliardi, Laura (Ed.)The formic acid-ammonia dimer is an important example of a hydrogen-bonded complex in which a double proton transfer can occur. Its microwave spectrum has recently been reported and rotational constants and quadrupole coupling constants were determined. Calculated estimates of the double-well barrier and the internal barriers to rotation were also reported. Here we report a full-dimensional potential energy surface (PES) for this complex, using two closely related Δ-machine learning methods to bring it to the CCSD(T) level of accuracy. The PES dissociates smoothly and accurately. Using a 2d quantum model the ground vibrational-state tunneling splitting is estimted to be less than 10−4 cm−1. The dipole moment along the intrinsic reaction coordinate is calculated along with a Mullikan charge analysis and supports mildly ionic character of the minimum and strongly ionic character at the double-well barrier.more » « less
-
An official website of the United States government
